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SUMMARY

In this paper we develop multiple hypotheses testing procedures to compare a new treatment with a set of
standard treatments in a clinical trial. The aim is to classify the new treatment with respect to each of the
standards, by specifying those to which the new treatment is superior, those to which the new treatment is
equivalent and those to which one can establish neither superiority nor equivalence. We propose several
stepwise procedures and compare them with respect to their familywise error rates and power. The
step-down methods SD1 and SD2 test for superiority first, followed by tests for equivalence for those
comparisons where we cannot establish superiority. The step-up methods SU1 and SU2 test for equivalence
first, followed by tests for superiority for those comparisons where we can establish at least equivalence. The
methods SD3 and SU3 apply the tests for superiority and equivalence in pairs. All the methods require that
we specify a threshold value d'0 in advance for defining equivalence. In applications where it is not
possible to specify a value d, we can use the method SD1 by testing for superiority first, followed by
one-sided confidence limits on the efficacy differences for those comparisons where we cannot establish
superiority. ( 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Morikawa and Yoshida1 as well as Dunnett and Gent2 considered the problem of testing the
significance of the difference in efficacy between a new treatment compared with a standard
treatment in a clinical trial setting. Instead of using a two-sided test, which tests simultaneously
for either a positive difference in favour of the new treatment or a negative difference in favour of
the standard, they proposed testing simultaneously for a positive difference and for equivalence
between the new treatment and the standard.

The rationale for testing simultaneously for superiority and equivalence is that, in many
cases, an investigator wishes to establish first whether the new treatment can be shown superior
to the standard, in which case it becomes a possible candidate to replace the standard as the



recommended method of treatment, and secondly, if superiority cannot be established, whether
the new treatment has equivalent efficacy to the standard, in which case it becomes a possible
candidate for use as an alternative treatment method. Failure to establish either superiority or
equivalence of the new treatment suggests that one cannot recommend it for use as it may, in fact,
be inferior to the standard in efficacy.

The purpose of the present paper is to consider the case where there is more than one standard
treatment for comparison with the new treatment. When there are two are more standards
available, a sponsor of a potential new treatment may wish to compare its efficacy with each of the
available standards. For example, Hoover3 refers to a study by Graham et al.4 in which
acetaminophen, a new treatment for cold symptoms, and a placebo were compared with two
standard therapies, aspirin and ibuprofen. The primary question addressed by these authors was
whether acetaminophen has less virus shedding and less suppression of antibody responses (two
undesirable effects of the treatments) than aspirin and ibuprofen. Another example is the
GUSTO5 clinical trial that we discuss in Section 9.

Denote by k the number of standard treatments. We assume that the aim is to classify the new
treatment with respect to each of the k standards, by specifying those to which the new treatment
is superior, those to which the new treatment is equivalent and those to which one can claim
neither superiority nor equivalence.

Recently, stepwise multiple test procedures have been developed for the purpose of simulta-
neously testing a set of null hypotheses. In stepwise testing, the hypotheses are ordered from the
least to the most significant, using either their p-values or the magnitudes of their test statistics,
and tested sequentially. Testing starts either with the most significant and continues as long as
a rejection occurs (called step-down testing), or with the least significant and continues as long
as a non-rejection or acceptance occurs (called step-up testing). In the present paper, we extend
the normal theory step-down and step-up procedures developed in Dunnett and Tamhane6~8

to the problem of testing for superiority/equivalence between a new treatment and k standard
treatments.

2. PRELIMINARIES

Denote by k
i
the unknown mean efficacy for the ith treatment (i"0, 1,2 , k) where 0 denotes the

new treatment. Define h
i
"k

0
!k

i
or h

i
"k

i
!k

0
, depending on whether larger or smaller values

of the k’s are better. We can test the following pair of hypotheses to classify the status of the new
treatment compared with the ith standard:

H
i
: h

i
)0 versus h

i
'0

and
H@

i
: h

i
)!d versus h

i
'!d

where d'0 denotes a difference in efficacy that is small enough for us to consider as clinically
insignificant. Rejection of H

i
establishes that the efficacy of the test treatment is superior to that of

the ith standard, while non-rejection of H
i
together with rejection of H@

i
establishes that it cannot

be worse than the standard by more than d and therefore, by definition, it is equivalent. The
non-rejection of both H

i
and H@

i
means that we have not shown the new treatment is either

superior or equivalent to the ith standard and hence we cannot recommend it as a substitute for
that standard treatment.
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Denote by t
i
and t@

i
the statistics for testing H

i
and H@

i
, respectively. For a one-way setup with n

i
independent observations in the ith group, let yN

i
be the sample mean for the ith group

(i"0, 1,2 , k). If we can assume normality and homogeneous error variance p2, then the test
statistics are

t
i
"(yN

0
!yN

i
)/sJ(1/n

i
#1/n

0
)

t @
i
"t

i
#d@

i
(1)

where s2 is an estimate of p2 based on l degrees of freedom (d.f.) and d@
i
"d/sJ(1/n

i
#1/n

0
). We

consider two types of stepwise testing procedures that we can apply to the t and t@ statistics using
a set of critical constants c

1
(2(c

k
. In the first type, we compare t

i
with c

i
whereas we

compare t @
i
with possibly a different constant from the set, depending on the ranking of t @

i
among

all the t and t@ test statistics. In the second type, we compare both t
i
and t @

i
with the same constant,

c
i
. In each case, we determine the constants so that the type I familywise error rate (FWE), where

FWE"PMreject any true H
i
or H@

i
N , (2)

satisfies the requirement: FWE)a under any configuration of the parameters h
i
. The justifica-

tion for this requirement is that any such type I error may result in a false claim for the efficacy of
the test treatment. We protect against this by requiring that the probability of such an event
occurring does not exceed a specified level a, where a'0 is an appropriately chosen small
quantity.

To simplify the presentation, we restrict the one-way setup to the case of balanced data, where
n
1
"2"n

k
"n with n

0
possibly different from n, in Sections 3 to 7. We discuss the case of

unequal n
i
in Section 8. In Sections 3 to 7, we assume that we have labelled the test statistics and

their associated hypotheses so that t
1
)2)t

k
. Since d@

i
"d@"d/sJ(1/n#1/n

0
) for all i, we

also have t @
1
)2)t @

k
.

3. SINGLE-STEP (SS) TESTING

A single-step (SS) procedure uses the same critical constant for all tests. It is the simplest
procedure; moreover, it is the only one that also provides simultaneous confidence interval
estimates of all the h

i
.

We reject H
i

if t
i
*c

k
and we reject H@

i
if t @

i
*c

k
, otherwise in each case we accept the

hypothesis, for i"1,2, k. Since t @
i
"t

i
#d@, an equivalent way of expressing the procedure is the

following: we reject both H@
i
and H

i
if t

i
*c

i
, we reject H@

i
but not H

i
if c

k
!d@)t

i
(c

k
and we

reject neither if t
i
(c

k
!d@. To control the FWE)a, we choose c

k
"ta

k,l,o which is the one-sided
a point of k-variate t with l d.f. and common correlation coefficient o"1/(1#n

0
/n). This can be

seen from the following set of simultaneous lower one-sided 100(1!a) per cent confidence
intervals for the h

i
"k

0
!k

i
:

h
i
*yN

0
!yN

i
!c

k
sJ(1/n

0
#1/n) (1)i)k).

Rejecting H
i
if t

i
*c

k
corresponds to rejecting if the lower confidence limit on h

i
is *0. Similarly,

rejecting H@
i

if t @
i
*c

k
corresponds to rejecting if the lower confidence limit on h

i
is

*!d (1)i)k). It is clear that the FWE for any number of hypotheses tested on the h
i
based on

these simultaneous confidence intervals is )a. The constant c
k
is identical to the constant c

k
used

in the first step of procedures SD1 and SD2 defined in the next section.
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4. STEP-DOWN (SD) TESTING

4.1. A Closed Step-Down Test Procedure (SD1)

To test the family of 2k hypotheses, H
i

and H@
i
(1)i)k), we apply the closure method of

Marcus et al.:9 see Hochberg and Tamhane10 (p. 54). This requires that we use all the t and t @
statistics, and we order them together from the least significant to the most significant. We
start with the most significant, which is t @

k
, then the next most significant and so on, rejecting

the corresponding hypothesis if the test statistic exceeds a certain critical value; this continues
until a hypothesis is not rejected, at which point all testing stops and any remaining hypotheses
are accepted.

In the general step, suppose that H
1
,2, H

i
and H@

1
,2 ,H@

j
remain untested. Then we look at

max(t
i
, t @

j
), where i*j since t

i
(t @

i
. Whichever is maximum, we compare it with the constant c

i
.

The reason for this choice is that we are actually testing the intersection (W) of all the remain-
ing hypotheses; since W(H

i
, H@

i
)"H@

i
, we can write the intersection hypothesis as

W(H@
1
,2,H@

j
, H

j`1
,2, H

i
) and the test statistic is max(t @

1
,2, t @

j
, t

j`1
,2, t

i
). Since there are

i statistics involved, the appropriate constant is c
i
, where c

m
equals the one-sided a point of

m-variate t for m"1,2 , k. For balanced data, when n
i
"n for i"1,2 , k, we have the equal

correlation case o
ij
"o"1/(1#n

0
/n) for iOj. We denote these a points by ta

m,l,o , which are
tabulated in several places for various values of m, l, o and a. For an extensive set of tables, see
Bechhofer and Dunnett.11

A simpler way to apply the SD1 procedure, which is exactly equivalent to the closure method
described above, proceeds in two stages as follows. In the first stage, we use the statistics
t
1
)2)t

k
to test the superiority hypotheses, H

i
. We test them in the usual step-down manner,

starting with t
k
, then t

k~1
and so on, continuing as long as we find t

i
*c

i
in which case we reject

the hypothesis H
i
. The first time we observe t

i
(c

i
, say for i"m, we accept H

1
,2 , H

m
and

terminate the first stage. In the second stage, we test H@
1
,2, H@

m
for equivalence. (There is no need

to test H@
j
for j'm, since we must reject H@

j
if we have rejected H

j
.) Accordingly, we consider

t @
1
,2, t @

m
(which are ordered, since we have assumed the case of equal n

i
). First of all, note that we

need only consider t @
j
between t

m
and t

m`1
, as any t @

j
't

m`1
must lead to rejection since t

m`1
did,

and any t @
j
(t

m
must lead to acceptance since t

m
did. Any t @

j
between t

m
and t

m`1
has c

m
for its

critical value and leads to rejection if t @
j
*c

m
. We can simply state that any t @

j
in the sequence

t @
1
,2, t @

m
that satisfies t @

j
*c

m
leads to the rejection of H@

j
. This rule identifies which of the

equivalence hypotheses H@
1
,2 ,H@

m
we reject in the second stage, using in effect the SS procedure

with critical constant c
m
.

An alternative way to look upon this second stage of SD1 is in terms of lower one-sided
confidence limits for the m differences k

0
!k

1
,2 , k

0
!k

m
: those that satisfy

yN
0
!yN

i
!c

m
sJ(1/n

0
#1/n)*!d identify the hypotheses H@

i
that are rejected. In this way, we can

use SD1 in situations where it may not be possible to specify a value d in advance to define
equivalence; instead, we can test the k superiority hypotheses first, followed by one-sided
confidence limits for the h

i
corresponding to those that we cannot claim as superior. Values

outside these limits identify the values of d for which SD1 establishes equivalence.

4.2. Modified Step-Down Test Procedures (SD2, SD3)

In this section, we modify the SD1 testing method in two ways. The first is by removing the
restriction that we only consider t @

j
't

m
in the second stage; we denote this procedure by SD2.
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Table I. Critical constants for procedures (k"4, l"R,
o"0·5, a"0·05)

Procedure d c
1

c
2

c
3

c
4

SS — 2·160 2·160 2·160 2·160

SD1, SD2 — 1·645 1·916 2·062 2·160

SD3 0·5 1·645 1·938 2·076 2·170
1 1·645 1·972 2·099 2·190
2 1·645 2·092 2·184 2·297

SU1, SU2 — 1·645 1·933 2·071 2·165

SU3 0·5 1·645 1·969 2·093 2·178
1 1·645 2·028 2·133 2·197
2 1·645 2·258 2·313 2·313

The first stage remains unchanged, and suppose we accept H
1
,2, H

m
and reject H

m`1
,2, H

k
as

in SD1. In the second stage, we replace the SS procedure using the value c
m

that we employed in
SD1 by the following SD testing procedure:

1. Start with the test statistics t @
1
)2)t @

m
. The first step tests H@

m
using c

m
: if t @

m
*c

m
, we

reject H@
m

and continue to the next step, otherwise we stop testing and accept all remaining
H@ hypotheses.

2. The general step tests H@
j

using the constant c
r
, where r"m if t @

j
't

m
, otherwise

r is determined so that t
r
(t @

j
(t

r`1
, that is, r"d(t

i
(t @

j
). If t @

j
*c

r
, we reject H@

j
and continue to the next step. Otherwise, we stop testing and accept all remaining H@
hypotheses.

The critical constants c
1
(2(c

k
that we use in this modified SD procedure are the

same as those defined in the preceding section, that is, c
m
"ta

m,l,o . We note that SD2 is
more liberal in testing the equivalence hypotheses than the closed testing procedure SD1, since
it rejects all hypotheses rejected by SD1 and may reject additional H@ hypotheses. We will
examine the effect of this modification on the FWE of SD2 in a simulation study described
in Section 7.

The second modification is to proceed in an identical manner to SD2, except that we use the
same constant c

i
to test both the equivalence hypothesis H@

i
and the corresponding superiority

hypothesis H
i
; we denote this procedure by SD3. An equivalent way to describe SD3 is in terms of

testing the hypotheses in pairs (H
i
, H@

i
). We reject both H

i
and H@

i
if we rejected H

i`1
and t

i
*c

i
,

we reject only H@
i
if we accepted H

i`1
and we rejected H@

i`1
and t

i
*c

i
!d@, and we accept all

remaining hypotheses if t
i
(c

i
!d@.

It turns out that the constants needed to control the FWE in SD3 are larger than those
used in SD1 and SD2. The derivation of these constants appears in the Appendix. See Table I
for an example of the numerical values for the case k"4, computed to three decimal places,
along with the usual SD constants used in SD1 and SD2 for comparison. Note that the
values of the SD3 constants depend on d and are * the corresponding constants for SD1
and SD2.
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5. STEP-UP (SU) TESTING

5.1. A Step-Up Analogue of the Closed Step-Down Procedure (SU1)

The method we propose here is the step-up analogue of the method SD1 described in Section 4.1.
We proceed in two stages, as we did for SD1 in Section 4.1. In the first stage, we use the t @ statistics
to test the equivalence hypotheses, H@

1
,2,H@

k
, starting with t @

1
, then t @

2
and so on, in the usual

step-up manner, continuing as long as we observe t @
j
(c

r
(in which case we accept the hypothesis

H@
j
) where r"d(t

i
(t @

j
). The first time we observe t @

j
*c

r
, we reject H@

j
and all remaining H@

hypotheses and terminate the first stage.
Suppose we accept H@

1
,2,H@

m
and reject H@

m`1
,2,H@

k
in the first stage (1)m)k). Then in

the next stage we test H
m`1

,2,H
k
for superiority. (There is no need to test H

i
for i)m, since we

must accept H
i
if we have accepted H@

i
.) Accordingly, we consider t

m`1
,2 , t

k
. Note that we can

accept all H
j
hypotheses for which t

j
)t @

m
and also any H

j
for which t @

m
(t

j
(c

j
)t @

m`1
. Simply

stated, we accept all H
j
for which t

j
(c

j
)t @

m`1
, and reject any remaining H hypotheses.

We use the same critical constants in the SU1 procedure as the one-sided a points used in the
SU procedure defined in Dunnett and Tamhane,7 with o"1/(1#n

0
/n) and d.f."l correspond-

ing to the variance estimate. Tables are available in Dunnett and Tamhane.7,12 We do not have
a proof that this SU1 procedure controls the FWE as we had for the SD1 procedure. We examine
whether or not it satisfies FWE)a in the simulation study described in Section 7.

5.2. Modified Step-Up Test Procedures (SU2, SU3)

In this section, we define two modifications of SU1 given in the previous section, analogous to the
modifications SD2 and SD3 of SD1. The first modified procedure, denoted SU2, tests the
equivalence hypotheses H@

1
,2 ,H@

k
in the first stage, which is unchanged from the first stage of

SU1. Suppose we accept H@
1
,2 , H@

m
and reject H@

m`1
,2 ,H@

k
in this stage.

In the second stage, we test the superiority hypotheses H
m`1

,2, H
k
. We replace the second

stage of SU1 by the following step-up testing procedure:

1. Start with the smallest of t
m`1

,2, t
k
, which is t

m`1
, and compare it with c

m`1
: if

t
m`1

(c
m`1

, accept H
m`1

and continue with t
m`2

; otherwise stop testing and reject
H

m`1
,2,H

k
.

2. The general step compares t
i
and c

i
, where m#1)i)k. If t

i
(c

i
, accept H

i
and continue

with t
i`1

; otherwise stop testing and reject all remaining H hypotheses.

We use the same critical constants for SU2 as those defined in Section 5.1 for SU1. We note
that SU2 is more conservative in testing the superiority hypotheses than the procedure SU1, since
it rejects no H hypotheses accepted by SU1. We examine the effect of the modification introduced
in SU2 on the FWE in the simulation study described in Section 7.

The second modified method SU3 is the step-up analogue of SD3 described in Section 4.2. It
proceeds in an identical manner to SU2, except that we use the same constant c

i
to test the

equivalence hypothesis H@
i
as we use to test the corresponding superiority hypothesis H

i
. An

equivalent way to describe SU3 is in terms of testing the hypotheses in pairs, (H
i
, H@

i
). We accept

both H
i
and H@

i
if we accepted H@

i~1
and t

i
(c

i
!d@, we accept H

i
and reject H@

i
if we accepted

H
i~1

and rejected H@
i~1

and t
i
(c

i
, and we reject all remaining hypotheses if t

i
*c

i
.

It turns out that the constants needed by SU3 to control the FWE are larger that those used in
SU1 and SU2. The derivation of these constants appears in the Appendix. See Table I for an
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example of the numerical values, given to three decimal places, along with the usual SU constants
used for SU1 and SU2 for comparison. Note that the values of the SU3 constants depend on
d and are * the corresponding constants for SU1 and SU2.

6. NUMERICAL EXAMPLE

In a randomized clinical trial, suppose we compare a test treatment ¹ with four standard
treatments S

1
, S

2
, S

3
and S

4
in parallel groups (one-way layout) with n

0
"n

i
"n. The observed

sample means are:

yN
0

yN
1

yN
2

yN
3

yN
4

8·68 6·97 6·94 5·80 4·55

Suppose that the standard deviation of (yN
0
!yN

i
) is pJ(2/n)"J2 and l"R(p is known). Test

the hypotheses H
i
and H@

i
for d"1·0 with FWE)0·05.

First, we compute the test statistics defined in (1). Note that d@"1/J2"0·71. We obtain the
following values for the test statistics:

Statistic 1 2 3 4

t
i

1·22 1·23 2·04 2·92
t @
i

1·93 1·94 2·75 3·63

Using the critical constants shown in Table I, we obtain the following results by applying
different procedures defined in the previous sections:

SS procedure The single-step procedure uses the critical value c
4
"2·160 for all tests; since t

4
,

t @
3

and t @
4

are the only statistics to exceed this value, we reject H
4
, H@

3
and H@

4
and conclude that

¹ is superior to S
4

and equivalent to S
3
.

SD1 procedure We find t
4
'2·160, t

3
(2·062, so we reject H

4
but not H

1
, H

2
, H

3
. Next we test

t @
3
, t @

2
and t @

1
against c

3
"2·062; since we find t @

3
'2·062 we reject H@

3
, but t @

2
and t @

1
are (2·062 so

we accept H@
2

and H@
1
. Thus, using SD1, we conclude ¹ is superior to S

4
and equivalent to S

3
.

SD2 procedure SD2 gives the same results for the t-statistics and it rejects t @
3

as in SD1. For the
remaining t @-statistics, we test t @

2
against c

2
"1·916 and t @

1
against c

1
"1·645; we find t @

2
'1·916

and t @
1
'1·645, so in addition to rejecting H

4
and H@

3
we reject H@

2
and H@

1
. Thus, using SD2, we

conclude that ¹ is superior to S
4

and equivalent to S
1
, S

2
and S

3
.

SD3 procedure Using SD3, we find that t
4
'2·190 so we reject H

4
and H@

4
, and that t

3
(2·099

but t @
3
'2·099 so we accept H

3
and reject H@

3
. At the next step, we can test only H@

2
; since

t @
2
(1·972, we accept H@

2
as well as H@

1
by implication. We conclude that ¹ is superior to S

4
and

equivalent to S
3
.

Sº1 procedure We find t @
1
(c

2
"1·933, t @

2
'1·933 (remember that we count the number of

smaller t
i
statistics to determine the index of the constant to use), so we accept H@

1
and reject H@

2
,
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Table II. Decisions* for numerical example in
Section 6

Procedure Standard

S
1

S
2

S
3

S
4

SS — — e s
SD1 — — e s
SD2 e e e s
SD3 — — e s
SU1 — e s s
SU2 — e e s
SU3 e e e s

* s superior, e equivalent, — no claim

H@
3
and H@

4
. In the second stage, we find t

2
(1·933 so we accept H

2
, and t

3
't @

2
which led to an H@

rejection so we reject H
3
and H

4
. Using SU1, we conclude¹ is superior to S

3
and S

4
, equivalent to

S
2

but can make no claim for equivalence or superiority with respect to S
1
.

Sº2 procedure The first stage is the same as for SU1. In the second stage, t
2
(1·933, t

3
(2·071,

t
4
'2·165 so we accept H

2
and H

3
and reject H

4
. Thus, we claim ¹ is superior to S

4
, equivalent to

S
3

and S
2
, and no claim with respect to S

1
.

Sº3 procedure We find that t @
1
'1·645 and t

1
(1·645 so we reject H@

1
and accept H

1
, and also

reject H@
2
, H@

3
, H@

4
by implication. Next, since t

2
(2·028 and t

3
(2·133 we accept H

2
and H

3
, but

t
4
'2·197 so we reject H

4
. Thus, using SU3, we claim that ¹ is equivalent to S

1
, S

2
, S

3
and

superior to S
4
.

In Table II, we tabulate the decisions we made by the six procedures concerning the status of
¹ with respect to each of the standards S

1
to S

4
.

7. SIMULATION STUDIES OF FWE AND POWER

7.1. Description of the Simulation Studies

To compare the procedures with respect to their FWE and power, we carried out two simulation
studies for a particular case (k"4, l"R, d"1·0, p/Jn"1·0, a"0·05). We calculated the
values of the critical constants c

1
, c

2
, c

3
and c

4
for each procedure to 4-decimal place accuracy.

In the FWE study, we selected several null configurations of the parameters. For each
configuration, we chose the number of simulations used to obtain estimates of the FWE for the
various procedures as 100,000 in order to obtain a sufficiently high precision (standard
error"0·0007) to identify values that exceed the nominal value of a. We used the same set of
simulations to obtain estimates for each of the methods: this introduced a positive correlation
between the estimates which increased the precision of the estimated differences between methods
(standard error"0·0001 approximately). The entire set took approximately seven minutes of
computing time on a 486DX2 66 MHz PC. The values of FWE obtained for each method appear
in Table III.

2496 C. DUNNETT AND A. TAMHANE

Statist. Med., 16, 2489—2506 (1997) ( 1997 by John Wiley & Sons, Ltd.



Table III. Simulated FWE for several null configurations (d"1, p/Jn"1, l"R, a"0·05)

Configuration Single-step Step-down Step-up

Number h
1

h
2

h
3

h
4

SS SD1 SD2 SD3 SU1 SU2 SU3

1 !1 !1 !1 !1 0·0489 0·0489 0·0489 0·0456 0·0482 0·0482 0·0452
2 !1 !1 !1 0 0·0496 0·0496 0·0496 0·0479 0·0491 0·0491 0·0472
3 !1 !1 !1 10 0·0397 0·0499 0·0499 0·0457 0·0490 0·0490 0·0433
4 !1 !1 0 0 0·0501 0·0501 0·0501 0·0493 0·0497 0·0496 0·0493
5 !1 !1 0 10 0·0389 0·0491 0·0494 0·0477 0·0483 0·0483 0·0455
6 !1 !1 10 10 0·0278 0·0501 0·0501 0·0437 0·0483 0·0483 0·0411
7 !1 0 0 0 0·0484 0·0484 0·0486 0·0484 0·0486 0·0483 0·0496
8 !1 0 0 10 0·0392 0·0494 0·0498 0·0492 0·0493 0·0489 0·0490
9 !1 0 10 10 0·0275 0·0492 0·0503 0·0492 0·0485 0·0485 0·0492

10 !1 10 10 10 0·0148 0·0486 0·0486 0·0486 0·0486 0·0486 0·0486
11 0 0 0 0 0·0497 0·0497 0·0497 0·0463 0·0506 0·0497 0·0459
12 0 0 0 10 0·0391 0·0494 0·0494 0·0454 0·0505 0·0490 0·0425
13 0 0 10 10 0·0281 0·0503 0·0503 0·0441 0·0530 0·0501 0·0417
14 0 10 10 10 0·0153 0·0492 0·0492 0·0492 0·0492 0·0492 0·0492

In the second simulation study to compare the procedures for power, we chose the number of
simulations for each configuration as 20,000. Since the power estimates are also positively
correlated due to the use of the same simulations to obtain the estimates for each method, this
number should provide adequate precision for comparing methods. The entire set took slightly
over one minute of computing time.

In applications of the methods, a user wishes to make correct decisions for the new treatment
with respect to each standard according to the values of the h

i
. If a particular value of h

i
is

sufficiently large to be considered an ‘important’ difference, he or she wishes to find the new
treatment superior to that standard or, failing that, equivalent. Accordingly, we chose the
following two definitions of power: the probability of finding all of the h

i
which are '0 as

superior, and the probability of finding all such h
i
equivalent or better (that is, either equivalent or

superior). Tables IV and V show the results.

7.2. Discussion of FWE and Power Results

Consider the FWE simulation results shown in Table III. The single-step procedure SS meets the
FWE requirement, as expected, but clearly it is overly conservative for some configurations. Of
the three step-down procedures, SD1 is based on closure and its critical values have been
determined to guarantee that it meets the requirement FWE)a; we see that the simulated values
verify this. With respect to SD2, we know it is more liberal than SD1. However, for some
configurations, this has no effect on the FWE (for example, configurations 1 and 3 where it is
impossible for SD2 to reject without SD1 also rejecting, and configurations 11—14 where none of
the H@

i
is true). The simulation results indicate that the increases in FWE when they occur are

small. The largest increase is for configuration 9 where the FWE of SD2 is 0·0011 ($0·0001
standard error) higher than the corresponding value for SD1. Moreover, the estimated FWE for
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Table IV. Simulated power"P(find all h
i
'0 superior) (d"1, p/Jn"1, l"R, a"0·05)

Configuration Single-step Step-down Step-up

Number h
1

h
2

h
3

h
4

SS SD1 SD2 SD3 SU1 SU2 SU3

1 !1 !1 !1 2 0·228 0·228 0·228 0·221 0·227 0·227 0·219
2 !1 !1 !1 3 0·486 0·486 0·486 0·475 0·485 0·485 0·472
3 !1 !1 !1 4 0·750 0·750 0·750 0·740 0·748 0·748 0·737
4 !1 !1 2 2 0·105 0·125 0·125 0·116 0·125 0·124 0·110
5 !1 !1 2 4 0·216 0·246 0·246 0·235 0·245 0·244 0·225
6 !1 !1 3 3 0·322 0·359 0·359 0·345 0·358 0·357 0·333
7 !1 !1 4 4 0·618 0·655 0·655 0·641 0·654 0·653 0·628
8 2 2 2 2 0·041 0·112 0·112 0·106 0·131 0·131 0·131
9 3 3 3 3 0·187 0·363 0·363 0·354 0·389 0·389 0·389

10 4 4 4 4 0·473 0·679 0·679 0·672 0·698 0·698 0·698

Table V. Simulated power"P(find all h
i
'0 equivalent or superior) (d"1, p/Jn"1, l"R, a"0·05)

Configuration Single-step Step-down Step-up

Number h
1

h
2

h
3

h
4

SS SD1 SD2 SD3 SU1 SU2 SU3

1 !1 !1 !1 2 0·487 0·487 0·487 0·474 0·484 0·484 0·472
2 !1 !1 !1 3 0·748 0·748 0·748 0·739 0·747 0·747 0·736
3 !1 !1 !1 4 0·914 0·914 0·914 0·910 0·913 0·913 0·909
4 !1 !1 2 2 0·316 0·331 0·332 0·342 0·330 0·330 0·330
5 !1 !1 2 4 0·477 0·507 0·508 0·502 0·505 0·505 0·489
6 !1 !1 3 3 0·616 0·635 0·636 0·640 0·633 0·633 0·628
7 !1 !1 4 4 0·857 0·871 0·871 0·871 0·870 0·870 0·864
8 2 2 2 2 0·186 0·250 0·262 0·351 0·259 0·258 0·387
9 3 3 3 3 0·476 0·580 0·595 0·677 0·592 0·591 0·704

10 4 4 4 4 0·768 0·850 0·857 0·898 0·855 0·855 0·909

SD2 exceeds the nominal value 0·05 slightly. (Note that the small excess FWE"0·0503 for
configuration 13 must be a random event, since this is one of the configurations where the FWE
of SD1 and SD2 coincide.) To examine the difference for configuration 9 more closely, we
conducted a set of 14 repetitions of the simulations for this configuration. The results obtained
were mean FWE"0·0504 ($0·000185 standard error). We conclude that SD2 does not guaran-
tee the FWE requirement for all configurations, but the excess when it occurs is small. Regarding
SD3, we determined its critical values to ensure that it meets the FWE requirement for the
configurations conjectured to be least favourable; the simulated values indicate that SD3 is
successful in meeting this requirement.

Of the three step-up procedures, SU1 fails to meet the FWE requirement for configurations 11,
12 and 13; accordingly, we must consider it unsatisfactory in this respect. On the other hand, SU2
does satisfy FWE)0·05 for these configurations as well as all the others, thus the modification of
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SU1 that we used for SU2 is apparently successful in adjusting the FWE down to a satisfactory
level. We note also that FWE for SU2 is )FWE for SD1 for all configurations, which suggests
that it is conservative relative to the closed procedure SD1. The simulated values for SU3 indicate
that, like SD3, it meets the FWE requirement for all configurations.

Now consider the power results shown in Tables IV and V. The precision of the observed
differences in power between methods is such that we can take any observed difference*0·002 in
these tables as statistically significant.

Consider the effect of the modification to the closure method introduced in Section 4.2 and its
step-up counterpart in Section 5.2; in most cases, the power differences between SD2 and SD1
and between SU2 and SU1 are quite negligible, as we might expect. However, there are some
exceptions in Table V, especially for configurations 8—10 where all four h

i
'0. Examination of

the individual simulations where these instances occurred revealed that, in all cases, SD1 failed to
reject one or two H@

i
hypotheses whereas SD2 and usually the other stepwise procedures as well

succeeded in rejecting them.
Note also that the methods SD3 and SU3 seem to be at a disadvantage compared with

their counterparts in Table IV, whereas in Table V they have markedly higher powers under
configurations 8—10. The explanation for this is that the constants used by SD3 and SU3 are
larger than those used by the other stepwise procedures, which makes it more difficult to reject the
superiority hypotheses H

i
. On the other hand, it is easier to reject equivalence hypotheses

H@
i
using SD3 and SU3, since the other methods often require the use of a constant with a higher

index.
We note that the step-up methods are superior to their step-down counterparts for configura-

tions 8 to 10 in Table IV while the step-down methods tend to be superior for configurations 1 to
7. This is in accord with the results obtained in our earlier paper (Dunnett and Tamhane7) where
we noted that SU has higher power than SD when all or most hypotheses are false whereas SD
has higher power than SU when one or a few hypotheses are false.

We limited the simulations to d.f."R (known variance case) because we did not expect the
results to differ much for small d.f. To check this, we repeated the power simulations for d.f."10.
We found qualitatively similar results, with perhaps slightly better results for methods SD3 and
SU3 compared with their counterparts than were in evidence when d.f."R.

8. EXTENSIONS TO UNBALANCED DATA

In Sections 4 to 7 above, we have assumed the one-way setup with balanced data, that is,
n
1
"2"n

k
"n with n

0
possibly different from n. In this section, we discuss the changes needed

to extend the results to the case of unequal n
i
’s.

There are two consequences of having unequal n
i
’s: (i) the d@

i
in equation (1) are unequal, which

makes the ordering of the t @
i

possibly different from the ordering of the t
i
; (ii) the correlation

structure of the multivariate t random variables that arise in the computation of the critical
constants is no longer o

ij
"o"1/(1#n

0
/n), but is

o
ij
"SA

1

1#n
0
/n

i
B SA

1

1#n
0
/n

j
B (1)iOj)k). (3)

We now consider the effects of having unequal n
i
’s on each of the procedures described in the

preceding sections.
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SS procedure This procedure remains unchanged from its description in Section 3 except for
replacing d@ by d@

i
and defining c

k
differently. To control the FWE)a, we choose c

k
"ta

k,l,R which
is the one-sided a point of k-variate t with l d.f. and correlation matrix R"(o

ij
). The value of c

k
is

identical with that of c
k
used by SD1 and SD2 below.

SD1 and SD2 procedures Denote the ordered values of the test statistics for the superiority
hypotheses by t

1
)2)t

k
. The first stage of SD1 and SD2, which uses the t

i
in a step-down

fashion to test the superiority hypotheses H
1
,2 , H

k
, is unchanged from before. Suppose that we

accept H
1
,2 , H

m
and reject H

m`1
,2, H

k
. At the second stage, we test the equivalence hypothe-

ses H@
1
,2, H@

m
using t @

(1)
)2)t @

(m)
which are the ordered values of t @

1
,2 , t @

m
. Then we proceed

as we did in Sections 4.1 and 4.2, except that we use the latter ordered test statistics. For SD1, any
t @
(j)

in the sequence t @
(1)

,2 , t @
(m)

that satisfies t @
( j)
*c

m
leads to the rejection of the corresponding

hypothesis H@
( j)

. For SD2, we use the t @
( j)

in a step-down manner, starting with t @
(m)

, then t @
(m~1)

etc.
We reject H@

( j)
if t @

(j)
*c

r
, where r"m if t @

(j)
't

m
and r"d(t

i
(t @

( j)
) if t @

( j)
(t

m
, and go to H@

( j~1)
;

otherwise we stop testing and accept H@
(1)

,2,H@
(j)

.
We may determine the critical constants c

1
(2(c

k
as described in Dunnett and Tamhane.6

This uses the central t random variables ¹
1
,2 ,¹

k
corresponding to the observed ordered

statistics t
1
)2)t

k
; we determine c

r
for r"1, 2,2, k so that

PM¹
1
(c

r
,2,¹

r
(c

r
N"1!a. (4)

The results are c
r
"ta

r,l,Rr
, where ta

r,l,Rr
is the upper a equicoordinate critical point of the central

r-variate t distribution with d.f."l and correlation matrix R
r

associated with ¹
1
,2 ,¹

r
.

However, according to Liu13 this method may not always satisfy the FWE requirement, although
simulation evidence indicates that it does. He proposed that we determine c

r
for r"1, 2,2 , k

from the equation

min
1)i1:2:ir)k

P M¹
i1
(c

r
,2,¹

ir
(c

r
N"1!a; (5)

the resulting solution is conservative. He showed that this minimum is achieved when ¹
i1
,2,¹

ir
are associated with the r smallest sample sizes. Thus c

r
"ta

r,l,Rr
as above, except that the

correlation matrix R
r
is associated with the new treatment versus standard comparisons involv-

ing the r smallest standard groups.

Sº1 and Sº2 procedures We start as before by labelling the test statistics and their associated
hypotheses so that t @

1
)2)t @

k
, but we do not necessarily have t

1
)2)t

k
. The first stage of

SU1 and SU2, which uses the t @
i

in a step-up fashion to test the equivalence hypotheses
H@

1
,2 , H@

k
, is the same as before. Suppose that we accept H@

1
,2,H@

m
and reject H@

m`1
,2, H@

k
. At

the second stage, we test the superiority hypotheses H
m`1

,2 ,H
k
using t

m`1
,2, t

k
. Denote their

ordered values by t
(m`1)

)2)t
(k)

. Then we proceed as we did in Sections 5.1. and 5.2, except
that we use the latter ordered test statistics. For SU1, any t

(j)
in the sequence t

(m`1)
,2, t

(k)
that

satisfies t
(j)
(c

j
)t @

m`1
leads to the acceptance of the corresponding hypothesis H

(j)
. For SU2, we

use the t
(j)

in a step-up manner, starting with t
(m`1)

, then t
(m`2)

etc., accepting H
(j)

if t
(j)
(c

j
, and

going to H
(j`1)

; otherwise testing stops and we reject H
(j)

,2, H
(k)

.
We may determine the critical constants c

1
(2(c

k
as described in Dunnett and Tamhane.8

After calculating c
1
,2 , c

r~1
, we determine c

r
for r"1, 2,2, m (1)m)k) so that

P M(¹
1
,2 ,¹

r
)((c

1
,2 , c

r
)N"1!a (6)
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Table VI. Results from GUSTO5 clinical trial

Group Treatment Sample Mortality Standard ¹
1

versus S
i

¹
2

versus S
i

size, N rate r error, SE
t
i

t @
i

t
i

t @
i

S
1

SK#IV hep. 9,796 7·2% 0·26 2·54 3·96 0·55 1·93
S
2

SK#SC hep. 10,377 7·4% 0·26 3·14 4·56 1·11 2·51
¹

1
t-PA#IV hep. 10,344 6·3% 0·24 — — — —

¹
2

mix.#IV hep. 10,328 7·0% 0·25 — — — —

where (¹
1
,2,¹

r
) denotes the ordered values of the central t random variables ¹

1
,2,¹

r
corresponding to the statistics t

1
)2)t

r
. As noted in Dunnett and Tamhane,8,12 we cannot

claim that this method of determining the constants always satisfies FWE)a, although the
simulation evidence suggested that it does. However, Grechanovsky and Pinsker14 have con-
structed a counterexample for which the FWE exceeds a by a small amount. The conservative
method of Liu13 determines c

r
, after calculating c

1
,2 , c

r~1
, from the equation

min
1)i1:2:ir)k

P M¹
i1
,2 ,¹

ir
)((c

1
,2 , c

r
)N"1!a. (7)

We must determine the minimum in this equation numerically, since it is not necessarily achieved
by defining the ¹ random variables as associated with the r smallest sample sizes as in
equation (5).

SD3 and Sº3 procedures The descriptions of these procedures are identical to those given in
Sections 4.2 and 5.2 except that the constant for testing H@

i
using t

i
is c

i
!d@

i
instead of c

i
!d@.

9. APPLICATION TO A CLINICAL TRIAL

We use the GUSTO5 clinical trial to illustrate the application of the stepwise testing methods
presented in this paper. There were two standard treatments: SK (streptokinase) with intravenous
heparin, and SK with subcutaneous heparin. The two test treatments were t-PA and a mixture
of both t-PA and SK (with lower dose levels of these two agents in the mixture than were used
with each given alone), along with intravenous heparin. TableVI shows the sample sizes and
the 30-day mortality rates observed in the trial, along with the standard errors
(SE"JMr(100!r)/NN of each rate.

The t (or z) statistics for comparing ¹
1
with the two standards, using the formula for comparing

two rates

t"(r
1
!r

2
)/JMr

1
(100!r

1
)/N

1
#r

2
(100!r

2
)/N

2
N ,

appear in column 6 of Table VI. These are the statistics for testing the two superiority hypotheses
H

1
and H

2
for ¹

1
. The corresponding equivalence statistics depend on the value d defined as

a clinically negligible difference, and we calculate them from

t@"(r
1
!r

2
#d)/JMr

1
(100!r

1
)/N

1
#r

2
(100!r

2
)/N

2
N .

Suppose that we agree upon d"0·5 as an appropriate value. Then we obtain the values of the t@
statistics shown in column 7 of the table.
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In this case, the statistics are bivariate (k"2). We compute their correlation coefficient as

o"SE2 (¹
1
)/(SE2(S

1
)#SE2 (S

2
))"0·46

where SE(·) denotes the standard error of the rate for the indicated group. This is close enough to
o"0·5 for us to use the a"0·05 critical values c

1
and c

2
given in Table I for any of the

procedures. Whichever procedure we use, we reject H
1

and H
2

at level a"0·05 for the compari-
sons of ¹

1
with the two standards and conclude that ¹

1
is superior to S

1
and S

2
.

Similarly, to compare ¹
2

with the two standards, we obtain the t and t@ statistics shown in
columns 8 and 9 of the table. For these statistics, we find o"0·48, so again we can use the critical
values given in Table I. Whichever procedure we use, we accept H

1
and H

2
and reject H@

1
and

H@
2

at level a"0·05 for the comparisons ¹
2

with the two standards. We conclude that, although
we cannot show that ¹

2
is superior to either standard, we can claim that is at least equivalent to

both S
1

and S
2
.

In the above, we have assumed that the purpose of the trial was to compare each of the two test
treatments separately with the two standards. If the purpose was to compare the better of the two
test treatments, defined as the one that produced the lower mortality rate in the trial, with the two
standards, then we can use the Bonferroni adjustment for the multiplicity effect of having two
candidates instead of one and perform the tests at level a/2 instead of a. This requires the use of
0·025 instead of 0·05 critical values. (For example, with SD1 or SD2, we use c

1
"1·96 and

c
2
"2·21 instead of the values given in Table I. This does not affect the decisions reached for ¹

1
in this application.)

10. DISCUSSION

In this paper, we proposed some stepwise testing procedures of both the step-down (SD) and
step-up (SU) type for comparing a new treatment with a set of k'1 standard treatments in
a clinical trial, where the purpose of the trial is to classify the standard treatments into those to
which the new treatment is superior, those to which it is at least equivalent and those for which no
claim can be made for the new treatment. The procedures employ one-sided hypothesis tests for
both superiority and equivalence, which may be more informative than the customary approach
of testing two-sided hypotheses for positive and/or negative differences. For k"1, all the
methods reduce to the method proposed by Dunnett and Gent2 for comparing a new treatment
with a single standard.

The step-down methods denoted by SD1 and SD2 are extensions of the usual one-sided SD
method that tests only for superiority, in that they coincide with the latter with respect to the tests
of the superiority hypotheses, but in addition provide tests for equivalence. Similarly, the step-up
methods denoted by SU1 and SU2 are extensions of the usual one-sided SU method. The
methods SD3 and SU3 use the same constants c

i
to test the hypotheses H

i
and H@

i
, which is

intuitively reasonable but the constants required are larger. Furthermore, the constants for these
methods depend upon the threshold value d for defining equivalence and hence must be
computed for each application; thus the SD3 and SU3 methods may be impractical. However,
they do have some power advantages over the other methods when all h

i
'0 and we are

concerned with finding either equivalence or superiority — see Table V. Note that the constants
used to test the equivalence hypotheses in SD1, SD2, SU1 and SU2 also depend on d, but only the
index of the constant is affected, hence we do not need to compute them for each chosen value
of d.
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The SD2 method is a modification of the closed method SD1, but we found that it has a FWE
that slightly exceeds the nominal value for certain null parameter configurations, although the
excess is very small. The SU1 method, which is the step-up analogue of SD1, fails to meet the
FWE requirement and accordingly we do not recommend its use. On the other hand, the SU2
method which employs an analogous modification to that used by SD2, meets the FWE
requirement in our simulation study. (Recall that the effects of this modification are opposite in
the two cases: SD2 is more liberal than SD1, while SU2 is more conservative than SU1.) It also
has some power advantages over the other procedures. Accordingly, we recommend it as an
alternative to SU1.

In choosing between SD1 (or SD2, if we can tolerate a slight increase in FWE) and SU2 in
a particular application, if our main aim is detection of superiority, Table IV shows that we may
prefer SD1 when we expect the new treatment is superior to one or a few of the k standards
whereas we may prefer SU2 if we expect the new treatment is superior to all or most of the
standards. In terms of detecting either equivalence or superiority, Table V shows that SD1 has
a slight edge if not all of them are superior (configurations 1—7), while SU2 dominates SD1 when
all of them are superior (configurations 8—10).

Dunnett and Gent2 allowed for the possibility of having two a levels, a
1

for testing the
equivalence hypothesis and a

2
for testing the superiority hypothesis. For k"1, our methods

reduce to the special case where a
1
"a

2
"a. If a particular application needs two a levels, we can

easily extend the SD1, SD2, SU1 and SU2 method to use two sets of constants, namely, a set
c@
1
,2 , c@

k
that are level a

1
for the H@ family of hypotheses and a set c

1
,2 , c

k
that are level a

2
for

the H family of hypotheses. The FWE for the combined family, defined in equation (2), is then
)max(a

1
, a

2
).

We note that there are some open questions for future research: to show that SU2 controls
the FWE as we only have simulation evidence for this and to prove the conjectures concern-
ing the parameter configurations that lead to the maximum FWE for procedures SD3 and
SU3.

APPENDIX: DERIVATION OF CRITICAL CONSTANTS FOR SD3 AND SU3

To determine the constants c
1
,2 , c

k
for the SD3 procedure to meet the requirement that the

type I FWE)a, we first state the following:

Conjecture: The type I FWE is maximum at a configuration h
r
of h"(h

1
,2, h

k
) for which

h
i
"!d for i)k!r and h

i
"0 for i'k!r, for some r: 0)r)k.

Thus we choose the constants to satisfy

max[FWE(h
0
), FWE(h

1
),2, FWE(h

k
)])a. (8)

We determine these constants recursively, beginning with k"1 where it is easy to see that
FWE(h

0
)"FWE(h

1
)"a if c

1
"tal , the one-sided a-point of Student’s t. Next, for k"2, we

determine c
2

to satisfy

max[FWE(h
0
), FWE(h

1
), FWE (h

2
)])a

using the value determined previously for c
1
, and so on for c

3
,2 , c

k
.
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The following argument shows that we must have c
k
*ta

k,l,o for all k*1. For configuration
h
k
"(0,2, 0), only rejection of an H hypothesis constitutes a type I error: hence we have

FWE(h
k
)"1!PMaccept H

1
,2 ,H

k
D (0,2, 0)N

"1!PMmax(¹
i
)(c

k
D(0,2 , 0)N. (9)

where the ¹
i
are the central t random variables corresponding to the observed statistics t

i
. In

a similar manner, for configuration h
0
"(!d,2 ,!d), accepting H@

i
implies H

i
is also accepted

so that we need to consider only the H@ hypotheses; hence we have

FWE(h
0
)"1!PMaccept H@

1
,2,H@

k
D (!d,2 ,!d)N

"1!PMmax(¹
i
)(c

k
!d@D (!d,2 ,!d)N

"1!PMmax(¹
i
)(c

k
D(0,2 , 0)N . (10)

Thus, for any k, we have FWE(h
0
)"FWE(h

k
)"a if we choose c

k
"ta

k,l,o . Therefore, to satisfy
equation (8) we must have c

k
*ta

k,l,o for all k*1. (In the computations, except for k"1, we
found that the maximum in (8) always occurred at some h

r
where rO0 or k, so in fact a strict

inequality holds for k'1.)
For m"0, 1,2, k, define

P
m
(h)"PMrejectH@

k~m`1
,2 , H@

k
only DhN

"PM¹
1
(c

k~m
!d@,2,¹

k~m

(c
k~m

!d@, (c
k~m`1

!d@,2, c
k
!d@)

)(¹
k~m`1

,2 ,¹
k
)((c

k
,2, c

k
) DhN (11)

where (¹
k~m`1

,2 ,¹
k
) denotes the ordered values of ¹

k~m`1
,2 ,¹

k
, which are between c

j
!d@

and c
k

for j"k!m#1,2, k, respectively. (Note that P
0

represents the probability that we
accept all hypotheses, and P

k
represents the probability that we reject all H@ hypotheses and

accept all H hypotheses.) Then

FWE(h
r
)"1!

r
+

m/0
A
r

mBP
m
(h

r
). (12)

We can use the following recursive formula (where d'0) to express the event in the last line of
(11) as a union (X) of disjoint events, enabling us to evaluate P

m
(h) as a sum of m! probability

expressions:

[(c
r
!d, c

r`1
!d,2 , c

k
!d))(¹

r
,¹

r`1
,2,¹

k
)((c

k
, c

k
,2 , c

k
)]

"Mc
r
!d)¹

r
(c

r`1
!d, [(c

r`1
!d ,2 , c

k
!d))(¹

r`1
,2,¹

k
)((c

k
,2 , c

k
)]N

ZMc
r`1

!d)¹
r
(c

r`2
!d, [(c

r
!d, c

r`2
!d ,2 , c

k
!d)

)(¹
r`1

,2 ,¹
k
)((c

k
,2, c

k
)]N

Z2

ZMc
k
!d)¹

r
(c

k
, [(c

r
!d, c

r`1
!d ,2 , c

k~1
!d))(¹

r`1
,2,¹

k
)((c

k
,2 , c

k
)]N .

(13)
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To determine the constants for unequal n
i
, we first extend the notation for P

m
given in

equation (11) (so that we can specify any set of m H@ hypotheses as rejected), as follows:

P
(j1,2, jm)

(h)"PMreject H@
j1
,2, H@

jm
only DhN

"PM¹ @
i
(c

k~m
, iO(j

1
,2 , j

m
), (c

k~m`1
,2 , c

k
)

)(¹ @
j1
,2,¹ @

jm
), (¹

j1
,2 ,¹

jm
)((c

k
,2, c

k
) DhN

for m"0, 1,2, k; here ¹ @
i
"¹

i
#d

i
. In place of equation (12) we have

FWE(h
r
)"1!

r
+

m/0

+
k~r:j1:2:jm)k

P
(j1,2 , jm)

(h
r
). (14)

We then determine the constants recursively, as before, to satisfy equation (8).
To determine the constants required for SU3, we make the same conjecture made above for

SD3 and determine them recursively to satisfy (8) as before. The following expressions are
analogous to equations (9) and (10):

FWE(h
k
)"1!PMaccept H

1
,2 ,H

k
D(0,2 , 0)N

"1!PM(¹
1
,2 ,¹

k
)((c

1
,2, c

k
) D (0,2, 0)N

and

FWE(h
0
)"1!PMacceptH@

1
,2 , H@

k
D(!d,2 ,!d)N

"1!PM(¹
1
,2,¹

k
)((c

1
!d@,2, c

k
!d@) D (!d,2,!d)N

"1!PM¹
1
,2 ,¹

k
)((c

1
,2, c

k
) D (0,2, 0)N .

Thus, for any k, FWE(h
0
)"FWE(h

k
)"a if we use the usual SU constants defined in Dunnett

and Tamhane,8 which satisfy

PM(¹
1
,2 ,¹

k
)((c

1
,2, c

k
) D(0,2, 0)N"1!a.

Therefore, to satisfy equation (8), c
k
for SU3 must be *c

k
for SU, for all k*1. We can compute

the FWE for other h
i
configurations using equation (12) where P

m
(h) is

P
m
(h)"PMrejectH@

k~m`1
,2 , H@

k
only DhN

"PM(¹
1
,2 ,¹

k~m
)((c

1
!d@,2 , c

k~m
!d@),

(c
k~m`1

!d@,2, c
k~m`1

!d@)

)(¹
k~m`1

,2 ,¹
k
)((c

k~m`1
,2 , c

k
) DhN (15)

where (¹
1
,2,¹

k~m
) denotes the ordered values of ¹

1
,2,¹

k~m
and (¹

k~m`1
,2,¹

k
) the

ordered values of ¹
k~m`1

,2,¹
k
(m"0, 1,2 , k). We use recursion formulae analogous to (13)

to expand the right hand side of (15) to obtain the (k!m)!m! individual probability expressions
needed to evaluate P

m
. These expressions enable us to evaluate the P

m
(h

r
) in (12) and determine

the constants to satisfy (8) as before.
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For the SU3 procedure with unequal n
i
, we extend the expression for P

m
in equation (15) as

follows:
P
(j1,2 , jm)

(h)"PMrejectH@
j1
,2 , H@

jm
only DhN

"PM(¹ @
i
; iO( j

1
,2, j

m
))((c

1
,2 , c

k~m
),

(¹
j1
,2 ,¹

jm
)((c

k~m`1
,2 , c

k
))(¹ @

j1
,2,¹ @

jm
) DhN

for m"0, 1,2 , k. We determine the constants recursively as before, using equation (14) and
satisfying equation (8).
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